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Abstract
We consider invariant ensembles of n× n Hermitian random matrices (known
also as the matrix models) in the case where the support of the limiting density
of states (DOS) consists of several intervals. By using recent results on the
asymptotics of orthogonal polynomials, we find first that the amplitudes of
the leading terms of the correlator of the normalized traces of resolvent of
random matrices and of their densities of states are quasi-periodic functions of
n, whose frequencies are the integrals of the limiting DOS over the intervals
of the support, and whose form is uniquely determined by the edges of the
support. This suggest a certain parametrization of the universality classes of
the correlator. Second we show that the leading terms of these correlators can
be expressed correspondingly via the matrix elements of the resolvent and of
the spectral kernel of a certain quasi-periodic Jacobi matrix whose coefficients
are determined by the same frequencies.

PACS numbers: 02.30.Gp

In recent years the eigenvalue distribution of various ensembles of random matrices has been
extensively studied being motivated by a number of questions in physics and mathematics
(see recent works [5,12–15,19] and references therein). In particular, of considerable interest
are unitary invariant ensembles of Hermitian matrices, known also as matrix models. Their
probability distribution is defined by the density

pn(M) = Z−1
n exp(−nTr V (M)) (1)

with respect to the ‘uniform’ measure dM = ∏n
j=1 dMjj

∏
j�k dRMjk dIMjk in the space

of Hermitian matricesM = {Mjk}nj,k, Mj,k = Mk,j . In (1), Z−1
n is the normalization constant

and V (λ) is a real-valued function, bounded from below and growing faster than 2 log |λ| as
|λ| → ∞. TypicallyV is a polynomial of degree 2p positive at infinity, although much broader
classes of potentials can also be studied (see, for example, [6, 11, 21]).
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One of the simplest basic characteristics of random matrices is their density of states
(DOS):

ρn(λ) = n−1
n∑
l=1

δ(λ− λ(n)l ) (2)

where {λ(n)l }nl=1 are eigenvalues of a random matrix. Of particular interest are the DOS moments
〈ρn(λ1) . . . ρn(λs)〉 for any s-tuple {λ1, . . . , λs}, s = 1, . . . , n. The symbol 〈· · ·〉 denotes here
and below the averaging with respect to the probability distribution (1). In particular, if all λi
are distinct, then [18]

〈ρn(λ1) . . . ρn(λs)〉 = n−sRn,s(λ1, . . . , λs) (3)

where

Rn,s(λ1, . . . , λs) = det{Kn(λj , λk)}sj,k=1 Kn(λ, µ) =
n−1∑
l=0

ψ
(n)
l (λ)ψ

(n)
l (µ) (4)

{ψ(n)l (λ)}∞l=0 is the orthonormalized system in which

ψ
(n)
l (λ) = exp(−nV (λ)/2)P (n)l (λ) (5)

and {P (n)l }∞l=0 is the system of polynomials orthonormal with respect to the weight wn(λ) =
exp(−nV (λ)). Kn(λ, µ) is called the reproducing kernel of the system {ψ(n)l (λ)}∞l=0.

The simplest important cases of (3) are the mean density ρn, and the (connected) DOS–
DOS correlator κn(λ1, λ2):

ρn(λ) = 〈ρn(λ)〉 κn(λ1, λ2) = 〈ρn(λ1)ρn(λ2)〉 − 〈ρn(λ1)〉〈ρn(λ2)〉. (6)

It can be shown [6] (see also [22]) that under rather general conditions on V in (1) the
DOS (2) tends weakly in probability to the non-random limit

lim
n→∞ ρn(λ) = ρ(λ) (7)

that can be found as the unique minimizer of the electrostatic energy

E[ρ] =
∫
V (λ)ρ(λ) dλ−

∫ ∫
ln |λ− µ|ρ(λ)ρ(µ) dλ dµ

∫
ρ(λ) dλ = 1 (8)

of linear charges subjected to the external field V .
In many cases the study of moments of the DOS is equivalent to that of the moments

〈gn(z1) . . . gn(zs)〉 of the normalized traces of the resolvents of random matrices, i.e. the
Stieltjes transforms of the DOS:

gn(z) = n−1 Tr(M − z)−1 =
∫
ρn(λ)

λ− z dλ I(z) �= 0. (9)

Most of the asymptotic results of the field concerns the case where the support σ of
the limiting DOS ρ of (7) is a single interval. There are, however, interesting effects
pertinent to the case where σ is a union of several disjoint intervals (it can be shown that
if degV = 2p, then σ consists of p disjoint intervals at most). Thus in general we can write
that

σ =
q⋃
l=1

[al, bl] − ∞ < a1 < b1 < · · · < aq < bq <∞. (10)

The multi-interval (multi-cut) case was studied in recent papers [1,3,7] (see also references
on earlier works given in these papers). In particular, the large-n behaviour of the correlator
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κn(λ1, λ2) of (6) and of its double Stieltjes transform

Dn(z1, z2) = 〈gn(z1)gn(z2)〉 − 〈gn(z1)〉〈gn(z2)〉 (11)

was discussed.
In this Letter, we would like to contribute to this discussion by using recent results [11,16]

on the asymptotic form of orthogonal polynomials entering (5). Namely we show that, if
the support of the limiting DOS consists of q � 2 disjoint intervals, then generically the
amplitudes of the leading terms of Dn(z1, z2) and of κn(λ1, λ2) are quasi-periodic functions
of n, determined uniquely by q − 1 incommensurate frequencies (α1, . . . , αq−1) of (16) and
by the edges of the support (10). This provides a certain parametrization of the leading terms,
i.e. a parametrization of the classes of the long-range universality of matrix models. We also
show that the correlator (11) can be expressed via matrix elements of the resolvent of a certain
Jacobi matrix with quasi-periodic coefficients determined by the same frequencies.

We give first a convenient form of the correlator (11). This requires certain facts on
orthogonal polynomials and associated Jacobi matrices (see, for example, [2]). System (5)
gives rise to the semi-infinite Jacobi matrix

J (n) = {J (n)lm }∞l,m=1 J
(n)
lm = r(n)l δl+1,m + s(n)l δl,m + r(n)l−1δl−1,m r

(n)
−1 = 0 (12)

via the recurrent relationλP (n)l (λ) = r(n)l P (n)l+1 (λ)+s
(n)
l P

(n)
l (λ)+r

(n)
l−1P

(n)
l−1(λ), valid for l � 0 with

r
(n)
−1 = 0. The matrix J (n) can be regarded as a self-adjoint operator acting in the space l2(Z+) of

semi-infinite square integrable sequences. The resolution of identity E (n)(dλ) = δ(λ−J (n)) dλ
of this operator has the matrix elements E (n)lm (dλ) = ψ

(n)
l (λ)ψ

(n)
m (λ) dλ, where ψ(n)l (λ),

l = 0, 1, . . . are defined in (5). In particular

R
(n)
lm (z) := (J (n) − z)−1

lm =
∫
ψ
(n)
l (λ)ψ

(n)
m (λ)

λ− z dλ. (13)

Now, by using (2), (4), and (9), we can write the correlator Dn(z1, z2) as

Dn(z1, z2) = 1

2n2

∫ ∫
(λ1 − λ2)

2Kn(λ1, λ2)
2

(λ1 − z1)(λ1 − z2)(λ2 − z1)(λ2 − z2)
dλ1 dλ2

or, in view of (13) and the Christoffel–Darboux identity [2], as

Dn(z1, z2) = (r
(n)
n−1)

2

n2(δz)2

[
δR

(n)
n−1,n−1.δR

(n)
n,n − (δR(n)n,n−1)

2
]

(14)

where for any functionf (z)we set δf = f (z1)−f (z2). It is easy to verify that (14) is equivalent
to the well known expression κn (λ1, λ2) = −n−2K2

n(λ1, λ2) [18] for the correlator (6).
We recall now the results of paper [11] that we are going to use. Introduce the limiting

integrated density of states (IDS) of random matrices

N(λ) =
∫ ∞

λ

ρ(λ′) dλ′ (15)

and the (q − 1)-dimensional vector for q � 2:

α = {αl}q−1
l=1 αl = N(al+1). (16)

The numbers βl = αl − αl+1, l = 1, . . . , q − 1 can be interpreted as relative charges of the
intervals [al, bl], l = 2, . . . , q of the support and are often called the filling numbers of these
intervals.

According to [11], for any n ∈ Z and γ = 0, 1, there exist continuous in λ functions
Nn,γ (λ), )n,γ (λ), and a number 0 < τ � 1, such that if λ belongs to the interior of the support
σ (10), then

ψ
(n)
n−γ (λ) = Nn,γ (λ) cos(πnN(λ) + )n,γ (λ)) + O(n−τ ) n→ ∞. (17)
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Moreover, Nn,γ (λ) and )n,γ (λ) depend on n via the vector nα, i.e. there exist continuous in
λ and in x1, . . . , xq−1 functions Nγ (λ; x1, . . . , xq−1), and )γ (λ; x1, . . . , xq−1), periodic with
period 1 with respect to each xl, l = 1, . . . , q − 1 and such that

Nn,γ (λ) = Nγ (λ; x1, . . . , xq−1) )n,γ (λ) = )γ (λ; x1, . . . , xq−1). (18)

The coefficient r(n)n−1 of the Jacobi matrix J (n) of (12) has a similar asymptotic behaviour:

r
(n)
n−1 = A(α1n, . . . , αq−1n) + O(n−τ ) (19)

where A(x1, . . . , xq−1) is a continuous function of period 1 with respect to each variable
x1, . . . , xq−1.

The functions Nγ , )γ , γ = 0, 1, and A can be expressed via the Riemann theta-
function, associated in the standard way with two-sheeted Riemann surface obtained by gluing
two copies of the complex plane slit along the gaps (b1, a2), . . . , (bq−1, aq), (bq, a1) of the
limiting DOS support (10), the last gap goes through infinity. It is important that the functions
Nγ , )γ , γ = 0, 1, and A are uniquely determined by the edges a1, b1, a2, . . . , bq of the
support of the limiting DOS of the ensemble.

If λ belongs to the exterior of σ then each ψ(n)n−γ decays exponentially in n as n→ ∞.
By using the facts described above, we can find the asymptotic form of the matrix

elements (13) for |Iz| � η > 0, where η is independent of n:

R
(n)
n−γ,n−γ (z) = 1

2

∫
σ

N 2
n,γ (λ)

λ− z dλ + o(1) γ = 0, 1 n→ ∞ (20)

R
(n)
n−1,n(z) = 1

2

∫
σ

Nn,1(λ)Nn,0(λ) cos()n,1(λ)− )n,0(λ))
λ− z dλ + o(1) n→ ∞. (21)

The formulae (14)–(21) lead to the following conclusions on the form of the amplitude
dn(z1, z2) of the leading term of the correlator (11):

Dn(z1, z2) = n−2dn(z1, z2)(1 + o(1)) n→ ∞. (22)

(i) In the generic case of incommensurable frequencies α1, . . . , αq−1 of (16), dn(z1, z2) is
a quasi-periodic function of n if q � 2.

(ii) dn(z1, z2) is uniquely determined by the edges a1, b1, a2, . . . , bq of the DOS
support (10), and by the frequencies α1, . . . , αq−1 of (16). Thus all the potentials V in (1)
having the same set of these parameters leads to the same amplitude dn(z1, z2). By using
the widely accepted terminology of the random matrix theory, we can say that the classes of
universality with respect to the leading term of the correlator (known also as the classes of the
long-range universality) are parametrized by a1, b1, a2, . . . , bq and by α1, . . . , αq−1.

Similar conclusions are valid for the DOS–DOS correlator κn in (6). However, unlike the
resolvent correlator (11) which becomes quasi-periodic as n → ∞ for any fixed non-real z1

and z2, the DOS–DOS correlator gets a quasi-periodic universal form only after the integration
with a smooth function φ(λ1, λ2) such that limλ1→λ2(λ1 − λ2)

−2φ(λ1, λ2) is bounded (the
weak or smoothed asymptotics).

This has to be contrasted with the short-ranged (or microscopic) universality that manifests
itself in 1/n-neighbourhoods of interior points of σ and is valid independently of the number
of connected components of σ and under the rather general conditions on the potential V
in (1) (see papers [11, 21]). Thus under conditions of these papers all the unitary invariant
ensembles (1) belong to the same short-range universality class. On the other hand, since
according to the above the form of the leading terms of the covariance Dn(z1, z2) depends on
the number of the intervals of the DOS support, the long-range universality is more sensitive
to the form of the potential (see, for example, formulae (26) and (27) below, corresponding to
the one-interval case and the two-interval case of a symmetric potential).
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We remark also that similar periodic and quasi-periodic modulations of certain asymptotic
formulae have already appeared in mathematical physics. We mention here the asymptotic
form of the DOS of the random discrete operators near their spectrum edges [17], and of the
Fredholm determinants of the integral operator determined by the kernel sin π(x−y)/π(x−y)
on the union of disjoint intervals of the real axis when the total length of the intervals tends to
infinity [10].

We will argue now that the leading terms of the matrix elements (20), (21) of R(n)(z) =
(J (n) − z)−1 coincide asymptotically with the matrix elements of the resolvent of a certain
quasi-periodic matrix. For the sake of simplicity we restrict ourselves to the case of an even
functionV in (1), when the coefficients s(n)l in (12) is zero. We need one more result concerning
the asymptotic behaviour of the entries r(n)l of the matrix J (n) of (12). Replace V in (1) by
V/g, 0 < g < g0 < ∞. Then, according to [11, 16], for all g, except for a possible finite
set of values, there exist a continuous function A(x1, . . . , xq−1; g) of period 1 with respect to
each variable x1, . . . , xq−1, and ε > 0 such that uniformly in g′ ∈ [g − ε, g + ε]

r
(n)
n−1(g

′) = A(nα; g′) + O(n−τ ) n→ ∞. (23)

Since A(x; g) is periodic in x, it can be considered as defined on the torus Tq−1. Suppose
first that the numbers α1, . . . , αq−1 are rationally independent (incommensurate). Then for any
x ∈ Tq−1, there exists a subsequence {nj }, such that the sequence of vectors {{njα} ∈ Tq−1},
whose components are the fractional parts of the components of the vectors njα, converges to x
as nj → ∞. Consider now the sequence aj = nj + k, k = o(nj ), nj → ∞. Then, according

to (1) and (23), we have r
(nj )

aj−1(g) = r(aj )aj−1(aj /nj g) = A(njα + kα; (1 + k/nj )g)+ O(1/nτ ) =
r

[x]
k (g) + o(1), nj → ∞, where

r
[x]
k (g) = A(x + kα; g). (24)

This allows us to introduce the double infinite Jacobi matrix J [x] whose off-diagonal
entries are r [x]

k (g), k ∈ Z, the diagonal entries are zero and the spectrum is σ . For any
x ∈ Tq−1, the entries r [x]

k are quasi-periodic in k.
By using (23), (24) and the resolvent identity for the pair (J (n),J [x]), it can be shown that

the matrix elementsR(n)aj bj (z) = ((J (n)−z)−1)aj bj with aj = nj +k, bj = nj + l coincide at the

limit nj → ∞, k, l = o(nj ) with the matrix elements R[x]
kl (z) = ((J [x] − z)−1)kl . This leads

to the following expression for the amplitude (22) of the leading term of the correlator (11):

d [x](z1, z2) = (r
[x]
0 )

(δz)2

(
δR

[x]
00 δR

[x]
11 − (

δR
[x]
01

)2)
. (25)

The formula demonstrates once more the quasi-periodic dependence of the leading term of
the correlator (11) on n via its dependence on x and allows us to find, at least in principle,
the leading term of Dn up to its dependence of the ‘initial phase’ by computing the matrix
elements of the resolvent R[x].

Note that the matrix J [x] is similar to the finite-band quasi-periodic Jacobi matrices
appearing in the integration of the nonlinear Toda lattice equations [23]. The similarity is in the
procedure of the construction of the Riemann surface and respective Riemann theta-functions
from a given spectrum and the difference is that the role of the (generalized) quasi-momentum
of the Toda theory here plays the IDS (15) of random matrices multiplied by π (recall, that
the quasi-momentum divided by π is the IDS of quasi-periodic Jacobi matrices, see, for
example, [20]). The difference disappears for the class of polynomial potentials described at
the end of this Letter (see also [9]).

We have discussed above the case when all frequencies αl , l = 1, . . . , q − 1 are
incommensurate. This case may be viewed as generic (see, for example, the recent paper [16]).
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In a non-generic case, where the components of α are rationally dependent, the set of values
of the parameter x, indexing the limiting Jacobi matrix J [x], can be obtained as the closure
of all limiting point of the sequence {nα}n�0. In the theory of almost-periodic functions, this
set is known as the hull of the almost periodic functions with a given set of frequencies in
its generalized Fourier series. An interesting non-generic case is where all the frequencies
are integer multiples of 1/p, where p � 2 is a positive integer. In this case the index set for
matrices J [x] is the finite set {x = m/p;m = 0, 1, . . . , p− 1} instead of the whole torus Tq−1

in the generic case, and the amplitude dn of the leading term of (25) is p-periodic in x.
Consider the two simplest cases: (1) of the one-interval support and; (2) of the of two-

interval support of an even potential: V (λ) = V (−λ). In the first case the entries of J [x]

are independent of the matrix index and of x and assuming without loss of generality that
σ = [−a, a] for some a > 0, we obtain that r [x]

k = a/2, s[x]
k = 0. We obtain the x-

independent leading term amplitude

d(z1, z2) = − 1

2(z1 − z2)2

[
1 − (z1z2 − a2)

X
1/2
1 (z1, z2)

]
(26)

where X1(z1, z2) = (z2
1 − a2)(z2

2 − a2). In the second case we have σ = [−b,−a] ∪ [a, b]
for some 0 < a < b < ∞ and the matrix J [x] is 2-periodic. The diagonal entries of J [x] are
zero and the off-diagonal entries are either (b− (−1)k+ma)/2 or (b + (−1)k+ma)/2, m = 0, 1,
i.e. defined by the spectrum up to the initial phase (similar ambiguity was found in [7]). By
using the results of [11], it can be shown that the first possibility is the case and we obtain for
the 2-periodic in m leading term

d [x](z1, z2) = − 1

2(z1 − z2)2

[
1− (z1z2 − a2)(z1z2 − b2)

X
1/2
2 (z1, z2)

]
− (−1)mab

2X1/2
2 (z1, z2)

(27)

where X2(z1, z2) = (z2
1 − a2)(z2

1 − b2)(z2
2 − a2)(z2

2 − b2).
Expression (26) agrees with that obtained in [4,8] by other methods, and expression (27)

agrees with that obtained in [7] and differs from that found in [1,3], where the analogue of this
expression is independent of x and contains elliptic integrals whose arguments are determined
by a and b, while expression (27) is an elementary function of all its arguments but is 2-periodic
in m. It can be shown that in a general case of a two-interval but not necessarily symmetric
potential the leading term is a quasi-periodic in m and contains the Jacobi elliptic functions
(but not the elliptic integrals as in [1, 3]). The elliptic functions disappear when one passes to
a two-interval symmetric potential.

In conclusion we will give a class of potentials always leading to the periodic Jacobi
matrices [9], thus for the periodic in x leading coefficient. For any positive integer p take a
polynomial v(λ) of degree p with real coefficients such that v(λ) = λp + O(λp−1), λ → ∞
and that for some g > 0 all the zeros of the polynomial v2(λ)−4g are real and simple. If there
exist a constant C such that the potential can be written in the form V (λ) = v2(λ)�(2p) +C,
then the limiting DOS is ρ(λ) = (2πpg)−1/2|v′(λ)||4g − v2(λ)|1/21σ (λ), its support consists
of p intervals (determined by the zeros of v2(λ) − 4g) and αl = l/p, l = 0, . . . , p − 1,
i.e. the Jacobi matrix J [x] is p-periodic. The proof of a given statement will be published
elsewhere [9].
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